Ultrastable cellulosome-adhesion complex tightens under load
نویسندگان
چکیده
Challenging environments have guided nature in the development of ultrastable protein complexes. Specialized bacteria produce discrete multi-component protein networks called cellulosomes to effectively digest lignocellulosic biomass. While network assembly is enabled by protein interactions with commonplace affinities, we show that certain cellulosomal ligand-receptor interactions exhibit extreme resistance to applied force. Here, we characterize the ligand-receptor complex responsible for substrate anchoring in the Ruminococcus flavefaciens cellulosome using single-molecule force spectroscopy and steered molecular dynamics simulations. The complex withstands forces of 600-750 pN, making it one of the strongest bimolecular interactions reported, equivalent to half the mechanical strength of a covalent bond. Our findings demonstrate force activation and inter-domain stabilization of the complex, and suggest that certain network components serve as mechanical effectors for maintaining network integrity. This detailed understanding of cellulosomal network components may help in the development of biocatalysts for production of fuels and chemicals from renewable plant-derived biomass.
منابع مشابه
Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass
The cellulosome is a supramolecular multienzyme complex comprised of a wide variety of polysaccharide-degrading enzymes and scaffold proteins. The cellulosomal enzymes that bind to the scaffold proteins synergistically degrade crystalline cellulose. Here, we report in vitro reconstitution of the Clostridium thermocellum cellulosome from 40 cellulosomal components and the full-length scaffoldin ...
متن کاملEnhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex.
A cellulosome-microbe complex was assembled ex vivo on the surface of Bacillus subtilis displaying a miniscaffoldin that can bind with three dockerin-containing cellulase components: the endoglucanase Cel5, the processive endoglucanase Cel9, and the cellobiohydrolase Cel48. The hydrolysis performances of the synthetic cellulosome bound to living cells, the synthetic cellulosome, a noncomplexed ...
متن کاملDevelopment of a multipoint quantitation method to simultaneously measure enzymatic and structural components of the Clostridium thermocellum cellulosome protein complex.
Clostridium thermocellum has emerged as a leading bioenergy-relevant microbe due to its ability to solubilize cellulose into carbohydrates, mediated by multicomponent membrane-attached complexes termed cellulosomes. To probe microbial cellulose utilization rates, it is desirable to be able to measure the concentrations of saccharolytic enzymes and estimate the total amount of cellulosome presen...
متن کاملExpression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome.
The enzymatic subunits of the cellulosome of Clostridium thermocellum are integrated into the complex by a major non-catalytic polypeptide, called scaffoldin. Its numerous functional domains include a single cellulose-binding domain (CBD) and nine subunit-binding domains, or cohesin domains. Two of the cohesin domains, together with the adjacent CBD, have been cloned and expressed in Escherichi...
متن کاملLysozyme activity of the Ruminococcus champanellensis cellulosome.
Ruminococcus champanellensis is a keystone species in the human gut that produces an intricate cellulosome system of various architectures. A variety of cellulosomal enzymes have been identified, which exhibit a range of hydrolytic activities on lignocellulosic substrates. We describe herein a unique R. champanellensis scaffoldin, ScaK, which is expressed during growth on cellobiose and compris...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014